Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames
نویسندگان
چکیده
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.
منابع مشابه
A Fundamental Study of Boundary Layer Diffusion Flames
Title of dissertation: A FUNDAMENTAL STUDY OF BOUNDARY LAYER DIFFUSION FLAMES Ajay Vikram Singh, Doctor of Philosophy, 2015 Dissertation directed by: Professor Michael J. Gollner Department of Fire Protection Engineering Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve complex interactions at the interface bet...
متن کاملA study of the effects of diluents on near-limit H2–air flames in microgravity at normal and reduced pressures
A combination of microgravity experiments and computational simulations were used to study effects of diluents on the near-limit properties of laminar, premixed hydrogen/air flames. The experiments were conducted in a short-drop free-fall laboratory facility that provided at least 450 ms of 10−2g conditions. Outwardly propagating spherical flames were used to measure near-limit laminar burning ...
متن کاملMHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملMHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملChemically-Passive Suppression of Laminar Premixed Hydrogen Flames in Microgravity
Effects of chemically-passive fire suppressants on laminar premixed hydrogen flames were investigated by combined use of microgravity experiments and computations. The experiments used a short-drop free-fall laboratory facility that provides at least 450 ms of 2 10 g. Near -limit laminar burning velocities were measured for outwardly propagating spherical stoichiometric hydrogen-air flames with...
متن کامل